Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Am J Clin Nutr ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484975

RESUMO

BACKGROUND: Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES: We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS: We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS: Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION: Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.

2.
FASEB Bioadv ; 6(1): 12-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223200

RESUMO

Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFß) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFß and in the bleomycin model of experimental lung fibrosis using Tollip-/- mice. We hypothesize that if TOLLIP negatively regulates TGFß signaling, then Tollip-/- mouse lung fibroblasts (MLFs) would have enhanced response to TGFß treatment, and Tollip-/- mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFß (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFß-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, Tollip-/- mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFß signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFßR1 Western blot. In response to TGFß treatment, both WT and Tollip-/- MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, Tollip-/- MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of Acta2 by qPCR. Functionally, Tollip-/- MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFß signaling in Tollip-/- through SMAD2 in vitro and in vivo. Tollip-/- mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, Tollip-/- mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.

3.
Nat Commun ; 15(1): 542, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228644

RESUMO

Limited understanding of the immunopathogenesis of human herpesvirus 6B (HHV-6B) has prevented its acceptance as a pulmonary pathogen after hematopoietic cell transplant (HCT). In this prospective multicenter study of patients undergoing bronchoalveolar lavage (BAL) for pneumonia after allogeneic HCT, we test blood and BAL fluid (BALF) for HHV-6B DNA and mRNA transcripts associated with lytic infection and perform RNA-seq on paired blood. Among 116 participants, HHV-6B DNA is detected in 37% of BALs, 49% of which also have HHV-6B mRNA detection. We establish HHV-6B DNA viral load thresholds in BALF that are highly predictive of HHV-6B mRNA detection and associated with increased risk for overall mortality and death from respiratory failure. Participants with HHV-6B DNA in BALF exhibit distinct host gene expression signatures, notable for enriched interferon signaling pathways in participants clinically diagnosed with idiopathic pneumonia. These data implicate HHV-6B as a pulmonary pathogen after allogeneic HCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 6 , Pneumonia , Infecções por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Estudos Prospectivos , Infecções por Roseolovirus/genética , Transcriptoma , DNA , Pneumonia/complicações , RNA Mensageiro
4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226418

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Assuntos
Antineoplásicos , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo
5.
Am J Respir Crit Care Med ; 209(3): 288-298, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812796

RESUMO

Rationale: The global burden of sepsis is greatest in low-resource settings. Melioidosis, infection with the gram-negative bacterium Burkholderia pseudomallei, is a frequent cause of fatal sepsis in endemic tropical regions such as Southeast Asia. Objectives: To investigate whether plasma metabolomics would identify biological pathways specific to melioidosis and yield clinically meaningful biomarkers. Methods: Using a comprehensive approach, differential enrichment of plasma metabolites and pathways was systematically evaluated in individuals selected from a prospective cohort of patients hospitalized in rural Thailand with infection. Statistical and bioinformatics methods were used to distinguish metabolomic features and processes specific to patients with melioidosis and between fatal and nonfatal cases. Measurements and Main Results: Metabolomic profiling and pathway enrichment analysis of plasma samples from patients with melioidosis (n = 175) and nonmelioidosis infections (n = 75) revealed a distinct immuno-metabolic state among patients with melioidosis, as suggested by excessive tryptophan catabolism in the kynurenine pathway and significantly increased levels of sphingomyelins and ceramide species. We derived a 12-metabolite classifier to distinguish melioidosis from other infections, yielding an area under the receiver operating characteristic curve of 0.87 in a second validation set of patients. Melioidosis nonsurvivors (n = 94) had a significantly disturbed metabolome compared with survivors (n = 81), with increased leucine, isoleucine, and valine metabolism, and elevated circulating free fatty acids and acylcarnitines. A limited eight-metabolite panel showed promise as an early prognosticator of mortality in melioidosis. Conclusions: Melioidosis induces a distinct metabolomic state that can be examined to distinguish underlying pathophysiological mechanisms associated with death. A 12-metabolite signature accurately differentiates melioidosis from other infections and may have diagnostic applications.


Assuntos
Burkholderia pseudomallei , Melioidose , Sepse , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Estudos Prospectivos , Metabolômica
6.
Eur Respir J ; 63(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097206

RESUMO

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Diabetes Mellitus Tipo 2/genética , Pulmão , Volume Expiratório Forçado/genética , Espirometria , Capacidade Vital
10.
Am J Respir Crit Care Med ; 208(8): 846-857, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37470492

RESUMO

Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have antiinflammatory properties and may benefit lung health. Objectives: To investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in a diverse sample of adults from general-population cohorts. Methods: Complementary study designs: 1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV1 and FVC measures in the NHLBI Pooled Cohorts Study and 2) two-sample Mendelian randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid levels were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for the most metabolically downstream omega-3 fatty acid, docosahexaenoic acid (DHA). An increase in DHA of 1% of total fatty acids was associated with attenuations of 1.4 ml/yr for FEV1 (95% confidence interval [CI], 1.1-1.8) and 2.0 ml/yr for FVC (95% CI, 1.6-2.4) and a 7% lower incidence of spirometry-defined airway obstruction (95% CI, 0.89-0.97). DHA associations persisted across sexes and smoking histories and in Black, White, and Hispanic participants, with associations of the largest magnitude in former smokers and Hispanic participants. The MR study showed similar trends toward positive associations of genetically predicted downstream omega-3 fatty acids with FEV1 and FVC. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher levels of downstream omega-3 fatty acids, especially DHA, on lung health.


Assuntos
Obstrução das Vias Respiratórias , Ácidos Graxos Ômega-3 , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Estudos Longitudinais , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética , Ácidos Docosa-Hexaenoicos
11.
PLoS One ; 18(5): e0281954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37134024

RESUMO

BACKGROUND AND AIMS: There is significant overlap between non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) with regards to risk factors and disease progression. However, the mechanism by which fatty liver disease arises from concomitant obesity and overconsumption of alcohol (syndrome of metabolic and alcohol-associated fatty liver disease; SMAFLD), is not fully understood. METHODS: Male C57BL6/J mice were fed chow diet (Chow) or high-fructose, high-fat, high-cholesterol diet (FFC) for 4 weeks, then administered either saline or ethanol (EtOH, 5% in drinking water) for another 12 weeks. The EtOH treatment also consisted of a weekly 2.5 g EtOH/kg body weight gavage. Markers for lipid regulation, oxidative stress, inflammation, and fibrosis were measured by RT-qPCR, RNA-seq, Western blot, and metabolomics. RESULTS: Combined FFC-EtOH induced more body weight gain, glucose intolerance, steatosis, and hepatomegaly compared to Chow, EtOH, or FFC. Glucose intolerance by FFC-EtOH was associated with decreased hepatic protein kinase B (AKT) protein expression and increased gluconeogenic gene expression. FFC-EtOH increased hepatic triglyceride and ceramide levels, plasma leptin levels, hepatic Perilipin 2 protein expression, and decreased lipolytic gene expression. FFC and FFC-EtOH also increased AMP-activated protein kinase (AMPK) activation. Finally, FFC-EtOH enriched the hepatic transcriptome for genes involved in immune response and lipid metabolism. CONCLUSIONS: In our model of early SMAFLD, we observed that the combination of an obesogenic diet and alcohol caused more weight gain, promoted glucose intolerance, and contributed to steatosis by dysregulating leptin/AMPK signaling. Our model demonstrates that the combination of an obesogenic diet with a chronic-binge pattern alcohol intake is worse than either insult alone.


Assuntos
Intolerância à Glucose , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Masculino , Leptina/metabolismo , Dieta Ocidental/efeitos adversos , Intolerância à Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
12.
Am J Respir Crit Care Med ; 207(12): 1565-1575, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212596

RESUMO

Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Interleucina-18 , Interleucina-33/genética , Células Epiteliais/patologia , Inflamação , Imunidade Inata
13.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020834

RESUMO

Rationale: COPD is the third leading cause of death in the United States. Sphingolipids, structural membrane constituents that play a role in cellular stress and apoptosis signalling, may be involved in lung function. Methods: In the Cardiovascular Health Study, a prospective cohort of older adults, we cross-sectionally examined the association of plasma levels of 17 sphingolipid species with lung function and COPD. Multivariable linear regression and logistic regression were used to evaluate associations of sphingolipid concentrations with forced expiratory volume in 1 s (FEV1) and odds of COPD, respectively. Results: Of the 17 sphingolipids evaluated, ceramide-18 (Cer-18) and sphingomyelin-18 (SM-18) were associated with lower FEV1 values (-0.061 L per two-fold higher Cer-18, p=0.001; -0.092 L per two-fold higher SM-18, p=0.002) after correction for multiple testing. Several other associations were significant at a 0.05 level, but did not reach statistical significance after correction for multiple testing. Specifically, Cer-18 and SM-18 were associated with higher odds of COPD (odds ratio per two-fold higher Cer-18 1.29, p=0.03 and SM-18 1.73, p=0.008). Additionally, Cer-16 and SM-16 were associated with lower FEV1 values, and Cer-14, SM-14 and SM-16 with a higher odds of COPD. Conclusion: In this large cross-sectional study, specific ceramides and sphingomyelins were associated with reduced lung function in a population-based study. Future studies are needed to examine whether these biomarkers are associated with longitudinal change in FEV1 within individuals or with incident COPD.

14.
Nat Genet ; 55(3): 410-422, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914875

RESUMO

Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , Fumar/genética , Polimorfismo de Nucleotídeo Único/genética
15.
Pulm Circ ; 13(1): e12205, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36873460

RESUMO

In pulmonary artery hypertension (PAH), emerging evidence suggests that metabolic abnormalities may be contributing to cellular dysfunction in PAH. Metabolic abnormalities such as glycolytic shift have been observed intracellularly in several cell types in PAH, including microvacular endothelial cells (MVECs). Concurrently, metabolomics of human PAH samples has also revealed a variety of metabolic abnormalities; however the relationship between the intracellular metabolic abnormalities and the serum metabolome in PAH remains under investigation. In this study, we utilize the sugen/hypoxia (SuHx) rodent model of PAH to examine the RV, LV and MVEC intracellular metabolome (using targeted metabolomics) in normoxic and SuHx rats. We additionally validate key findings from our metabolomics experiments with data obtained from cell culture of normoxic and SuHx MVECs, as well as metabolomics of human serum samples from two different PAH patient cohorts. Taken together, our data, spanning rat serum, human serum and primary isolated rat MVECs reveal that: (1) key classes of amino acids (specifically, branched chain amino acids-BCAA) are lower in the pre-capillary (i.e., RV) serum of SuHx rats (and humans); (2) intracellular amino acid levels (in particular BCAAs) are increased in SuHx-MVECs; (3) there may be secretion rather than utilization of amino acids across the pulmonary microvasculature in PAH and (4) an oxidized glutathione gradient is present across the pulmonary vasculature, suggesting a novel fate for increased glutamine uptake (i.e., as a source of glutathione). in MVECs in PAH. In summary, these data reveal new insight into the shifts in amino acid metabolism occurring across the pulmonary circulation in PAH.

16.
Crit Care Explor ; 5(1): e0827, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36600780

RESUMO

Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log2 increase, 1.53; 95% CI, 1.17-2.00; p = 0.002). Higher ANGPTL4 concentrations were also associated with higher proportions of venous thromboembolism and acute respiratory distress syndrome. Longitudinal ANGPTL4 concentrations were significantly different during the first 2 weeks of hospitalization in patients who subsequently died compared with survivors (p for interaction = 8.1 × 10-5). Proteomics analysis demonstrated abundance of ANGPTL4 in lung tissue compared with other organs in COVID-19. ANGPTL4 single-nuclear RNA gene expression was significantly increased in pulmonary alveolar type 2 epithelial cells and fibroblasts in COVID-19 lung tissue compared with controls. CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients.

17.
Circ Res ; 132(3): 254-266, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597887

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a complex disease characterized by progressive right ventricular (RV) failure leading to significant morbidity and mortality. Investigating metabolic features and pathways associated with RV dilation, mortality, and measures of disease severity can provide insight into molecular mechanisms, identify subphenotypes, and suggest potential therapeutic targets. METHODS: We collected data from a prospective cohort of PAH participants and performed untargeted metabolomic profiling on 1045 metabolites from circulating blood. Analyses were intended to identify metabolomic differences across a range of common metrics in PAH (eg, dilated versus nondilated RV). Partial least squares discriminant analysis was first applied to assess the distinguishability of relevant outcomes. Significantly altered metabolites were then identified using linear regression, and Cox regression models (as appropriate for the specific outcome) with adjustments for age, sex, body mass index, and PAH cause. Models exploring RV maladaptation were further adjusted for pulmonary vascular resistance. Pathway enrichment analysis was performed to identify significantly dysregulated processes. RESULTS: A total of 117 participants with PAH were included. Partial least squares discriminant analysis showed cluster differentiation between participants with dilated versus nondilated RVs, survivors versus nonsurvivors, and across a range of NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, REVEAL 2.0 composite scores, and 6-minute-walk distances. Polyamine and histidine pathways were associated with differences in RV dilation, mortality, NT-proBNP, REVEAL score, and 6-minute walk distance. Acylcarnitine pathways were associated with NT-proBNP, REVEAL score, and 6-minute walk distance. Sphingomyelin pathways were associated with RV dilation and NT-proBNP after adjustment for pulmonary vascular resistance. CONCLUSIONS: Distinct plasma metabolomic profiles are associated with RV dilation, mortality, and measures of disease severity in PAH. Polyamine, histidine, and sphingomyelin metabolic pathways represent promising candidates for identifying patients at high risk for poor outcomes and investigation into their roles as markers or mediators of disease progression and RV adaptation.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/diagnóstico , Estudos Prospectivos , Histidina , Esfingomielinas , Insuficiência Cardíaca/complicações , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos
18.
Commun Biol ; 6(1): 125, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721044

RESUMO

Sleep Disordered Breathing (SDB) is a common disease associated with increased risk for cardiometabolic, cardiovascular, and cognitive diseases. How SDB affects the molecular environment is still poorly understood. We study the association of three SDB measures with gene expression measured using RNA-seq in multiple blood tissues from the Multi-Ethnic Study of Atherosclerosis. We develop genetic instrumental variables for the associated transcripts as polygenic risk scores (tPRS), then generalize and validate the tPRS in the Women's Health Initiative. We measure the associations of the validated tPRS with SDB and serum metabolites in Hispanic Community Health Study/Study of Latinos. Here we find differential gene expression by blood cell type in relation to SDB traits and link P2XR4 expression to average oxyhemoglobin saturation during sleep and butyrylcarnitine (C4) levels. These findings can be used to develop interventions to alleviate the effect of SDB on the human molecular environment.


Assuntos
Multiômica , Síndromes da Apneia do Sono , Humanos , Hispânico ou Latino , Sono , Síndromes da Apneia do Sono/genética , Oxiemoglobinas , Receptores Purinérgicos P2X7 , Herança Multifatorial
19.
Nat Genet ; 55(2): 291-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702996

RESUMO

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Uso de Tabaco , Biologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
20.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L335-L344, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719987

RESUMO

Nephronectin (NPNT) is a basement membrane (BM) protein and high-affinity ligand of integrin α8ß1 that is required for kidney morphogenesis in mice. In the lung, NPNT also localizes to BMs, but its potential role in pulmonary development has not been investigated. Mice with a floxed Npnt allele were used to generate global knockouts (KOs). Staged embryos were obtained by timed matings of heterozygotes and lungs were isolated for analysis. Although primary and secondary lung bud formation was normal in KO embryos, fusion of right lung lobes, primarily the medial and caudal, was first detected at E13.5 and persisted into adulthood. The lung parenchyma of KO mice was indistinguishable from wild-type (WT) and lobe fusion did not alter respiratory mechanics in adult KO mice. Interrogation of an existing single-cell RNA-seq atlas of embryonic and adult mouse lungs identified Npnt transcripts in mesothelial cells at E12.5 and into the early postnatal period, but not in adult lungs. KO embryonic lungs exhibited increased expression of laminin α5 and deposition of collagen IV in the mesothelial BM, accompanied by abnormalities in collagen fibrils in the adjacent stroma. Cranial and accessory lobes extracted from KO embryonic lungs fused ex vivo when cultured in juxtaposition, with the area of fusion showing loss of the mesothelial marker Wilms tumor 1. Because a similar pattern of lobe fusion was previously observed in integrin α8 KO embryos, our results suggest that NPNT signaling through integrin α8, likely in the visceral pleura, maintains right lung lobe separation during embryogenesis.


Assuntos
Proteínas da Matriz Extracelular , Proteínas de Membrana , Animais , Camundongos , Proteínas da Matriz Extracelular/genética , Desenvolvimento Embrionário/genética , Pulmão/metabolismo , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...